

Eliminates Inert Gas Purging in Pre-welding Set-up Procedure – Saves Time & Labor

• Excellent Penetration to Provide Back-shielding

- Versatile Root Pass TIG Welding Rod for Joining Pipes and Tubes Made of Austenitic Steel, Low Alloy Steel, Carbon Steel and Their Combinations, i.e. Dissimilar Steels
- For Pipe Welding in Petrochemical / Chemical Plants, Power Stations, Oil Refineries, etc.

FC TIG "RootGard"

TRUSTEase of ApplicationWide VersatilityMAGNAFORProperties

SPECIAL FEATURES

Magna 309 is the most versatile flux-cored TIG wire designed for applying the root pass in pipe welding without inert gas purging.

- **Magna 309** eliminates the need for inert gas purging and hence saves time, labor and all related pre-welding set-up procedure on site.
- **Magna 309** achieves quality penetration to protect the back-side of the joint from oxidation.
- **Magna 309** is suitable for welding various kinds of austenitic steel, carbon steel, low alloy steel, and their combinations (or dissimilar steels).

OUTSTANDING PROPERTIES

MAGNA 309 is engineered for the pipe maintenance welding in the process industries with:

- Excellent scaling resistance at temperatures up to 600°C.
- Delicately formulated chemical composition to prevent martensite formation.
- X-Ray quality weld proven by radiography test performed by a renowned laboratory using API test standard.

USE FOR

Use MAGNA 309 for:

- Quality root pass in pipe welding without inert gas purging.
- Various kinds of austenitic steel, carbon steel, low alloy steel and their combinations.
- Minor repair on Cr-Mo pipes in emergency applications.

ITW PPFK reserves the right to modify or change this product for purposes of improving its performance characteristics. © 2016 ITW PP & F Korea Limited

The Magna Trade Mark is the property of ITW Inc., and is used under licence by ITW PP & F Korea Limited.

The information contained in this publication is to the best of our knowledge and accurate at the time of issue in October, 2016